
SimEvents®

Getting Started Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

SimEvents® Getting Started Guide
© COPYRIGHT 2005–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
November 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 First printing Revised for Version 1.1 (Release 2006a)
September 2006 Online only Revised for Version 1.2 (Release 2006b)
March 2007 Online only Revised for Version 2.0 (Release 2007a)
September 2007 Online only Revised for Version 2.1 (Release 2007b)
March 2008 Second printing Revised for Version 2.2 (Release 2008a)
October 2008 Online only Revised for Version 2.3 (Release 2008b)
March 2009 Online only Revised for Version 2.4 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.1.1 (Release 2010b)
April 2011 Online only Revised for Version 3.1.2 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.2 (Release 2012b)
March 2013 Online only Revised for Version 4.3 (Release 2013a)
September 2013 Online only Revised for Version 4.3.1 (Release 2013b)
March 2014 Online only Revised for Version 4.3.2 (Release 2014a)
October 2014 Online only Revised for Version 4.3.3 (Release 2014b)
March 2015 Online only Revised for Version 4.4 (Release 2015a)
September 2015 Online only Revised for Version 4.4.1 (Release 2015b)
March 2016 Online only Revised for Version 5.0 (Release 2016a)
September 2016 Online only Revised for Version 5.1 (Release 2016b)
March 2017 Online only Revised for Version 5.2 (Release 2017a)
September 2017 Online only Revised for Version 5.3 (Release 2017b)
March 2018 Online only Revised for Version 5.4 (Release 2018a)
September 2018 Online only Revised for Version 5.5 (Release 2018b)
March 2019 Online only Revised for Version 5.6 (Release 2019a)

Introduction
1

SimEvents Product Description . 1-2
Key Features . 1-2

Discrete-Event Simulation in Simulink Models 1-3
A Simple Queuing System . 1-3
Modeling Communication Delay on an Anti-Lock Braking System

. 1-4
Modeling a Hybrid System with Event-Based and Time-Based

Components . 1-7

Related Products . 1-9
Information About Related Products . 1-9
Limitations on Usage with Related Products 1-9

Role of Events in a SimEvents Model . 1-11
Overview of Events . 1-11
Viewing Events . 1-11
Actions for Events . 1-11
Event Actions Assistant for Events . 1-12

SimEvents Common Design Patterns . 1-16

Bibliography . 1-22

Build Simple Models with SimEvents Software
2

Create a Discrete-Event Model . 2-2
Add SimEvents Blocks to a Model . 2-2

v

Contents

Configure Blocks . 2-3
A Simple Queuing System . 2-4
Results of the Simulation . 2-5

Explore Statistics and Visualize Simulation Results 2-8
Explore a D/D/1 System Using Plots 2-10
Visualize and Animate Simulations . 2-17
Explore the System Using the Simulink Simulation Stepper . 2-19
Information About Race Conditions and Random Times 2-19

Manage Entities Using Event Actions 2-20
Build the Model . 2-20
Configure and Simulate Model . 2-21
Manage Entities in a Queueing System 2-24

Key Concepts in SimEvents Software
3

Entities in a SimEvents Model . 3-2
Meaning of Entities in Different Applications 3-2
Vary the Interpretation of Entities . 3-3
Visualize Entities . 3-3
Data and Role of Entity Attributes . 3-3
Create Entities in a SimEvents Model 3-3

Role of Entity Ports and Paths . 3-9
Entity Ports and Paths . 3-9
Definition of Entity Paths . 3-9
Implications of Entity Paths . 3-10
Designing Paths Using Input, Output, and Entity Combiner

Blocks . 3-11

Storage with Queues and Servers . 3-13
Queues and Servers . 3-13
Behavior and Features of Queues . 3-13
Physical Queues and Logical Queues 3-14
Queue Policies . 3-14
Storage Actions . 3-14
Behavior and Features of Servers . 3-16
What Servers Represent . 3-16

vi Contents

Common Server Use Cases . 3-17
Constructs Involving Queues and Servers 3-17
Broadcast Entities Using Multicast Mode 3-18

Write Event Actions . 3-21

Inspect Statistics
4

Count Entities . 4-2
Count Departures Across the Simulation 4-2
Count Departures per Time Instant . 4-2
Reset a Counter upon an Event . 4-2
Associate Each Entity with Its Index . 4-3

Simulate Multidomain Models
5

Create a Hybrid Model with Time-Based and Event-Based
Components . 5-2

Communication between SimEvents and Simulink components
. 5-3

SimEvents Part of Model . 5-4
Simulink Part of Model . 5-5
Simulate the Hybrid Model . 5-5
Event-Based and Time-Based Dynamics in the Simulation 5-7

vii

Introduction

• “SimEvents Product Description” on page 1-2
• “Discrete-Event Simulation in Simulink Models” on page 1-3
• “Related Products” on page 1-9
• “Role of Events in a SimEvents Model” on page 1-11
• “SimEvents Common Design Patterns” on page 1-16
• “Bibliography” on page 1-22

1

SimEvents Product Description
Model and simulate discrete-event systems

SimEvents provides a discrete-event simulation engine and component library for
analyzing event-driven system models and optimizing performance characteristics such as
latency, throughput, and packet loss. Queues, servers, switches, and other predefined
blocks enable you to model routing, processing delays, and prioritization for scheduling
and communication.

With SimEvents, you can study the effects of task timing and resource usage on the
performance of distributed control systems, software and hardware architectures, and
communication networks. You can also conduct operational research for decisions related
to forecasting, capacity planning, and supply-chain management.

Key Features
• Discrete-event simulation engine for multidomain system models
• Entities with custom data attributes representing tasks, packets, and items
• Blocks for queuing, service, routing, resource management, multicasting, replication,

and batching
• Statistics generation for delay, throughput, average queue length, and other metrics
• Library authoring with MATLAB® or Stateflow® for custom schedulers, hardware and

software constructs, and communication channels
• Block diagram animation and inspection for visualizing model operation and

debugging
• Custom animation creation for monitoring entities and events

1 Introduction

1-2

Discrete-Event Simulation in Simulink Models

In this section...
“A Simple Queuing System” on page 1-3
“Modeling Communication Delay on an Anti-Lock Braking System” on page 1-4
“Modeling a Hybrid System with Event-Based and Time-Based Components” on page 1-
7

SimEvents integrates discrete-event system modeling into the Simulink time-based
framework. In time-based systems, state updates occur synchronously with time. By
contrast, in discrete-event or event-based systems state transitions depend on
asynchronous discrete incidents called events.

Suppose that you want to measure how long the average car waits in a queue for its turn
to fill its tank at a busy gas station. Suppose that you also want to model the motion of the
car by solving differential equations. You can use a combination of time-based simulation
and discrete-event simulation, where:

• The time-based aspect controls the details of the car's trajectory
• The discrete-event aspect controls the queuing behavior

In a Simulink model, you typically construct a discrete-event system by adding various
blocks, such as generators, queues, and servers, from the SimEvents block library. These
blocks are suitable for producing and processing entities, which are abstractions of
discrete items of interest. Examples of entities are vehicles arriving at a gas station,
packets within a communication network, planes on a runway, or trains within a signaling
system. Asynchronous events correspond to motion and changes in entity attributes
through the system model, and they update the states of the underlying system. Examples
of states are lengths of queues or service time for an entity in a server.

A Simple Queuing System
This SimEvents model represents a simple queuing system that generates entities of
interest and queues them in a specified order, services them to change their attributes,
and terminates them to represent their departure from the line. To learn how to build this
model, see “Create a Discrete-Event Model” on page 2-2.

 Discrete-Event Simulation in Simulink Models

1-3

The Entity Generator block is used to generate entities with a fixed or randomized
intergeneration time. The Entity Queue block queues the entities based on a specified
order. The Entity Server block services entities for a length of time. The entities depart
the line through the Entity Terminator block.

Modeling Communication Delay on an Anti-Lock Braking
System
The seExampleCanBus model provides a scenario for investigating the communication
delay in a car anti-lock braking system (ABS). The system uses control area network
(CAN) communications between components. The model illustrates a heavily loaded
network of a distributed system.

The model investigates the delay of communication between the ABS controller and the
vehicle in ideal conditions and in the presence of noise.

1 Introduction

1-4

The CAN ID:5 subsystem consists of SimEvents library blocks that model a buffer in
transmission, message queues, and replicated messages for communication.

 Discrete-Event Simulation in Simulink Models

1-5

The model is used to analyze the effect of communication delay on the slip value with the
passage of time. The slip value is 0 when the wheel speed and the vehicle speed are
equal. The slip value is 1 when the wheels are completely locked. The desirable slip value
is 0.2.

The plot on the left represents the slip in ideal conditions and on the right is the slip in
the presence of noise. The decrease in slip performance is detected in the model and
resolved with reprioritization of CAN messages.

1 Introduction

1-6

For more information about the model, see “Effects of Communication Delays on an ABS
Control System”.

Modeling a Hybrid System with Event-Based and Time-Based
Components
One or more discrete-event systems can coexist with time-based systems in a Simulink
model. This coexistence facilitates the simulation of sophisticated hybrid systems. You can
pass signals from time-based components/systems to and from discrete-event
components/systems modeled with SimEvents blocks. The combination of time- and event-
based modeling facilitates the simulation of large-scale systems that incorporate smaller
subsystems from multiple environments. An example of a large-scale system has physical
modeling for continuous-time systems, such as electrical systems, which communicate via
a channel modeled as a discrete-event system. A Simulink model can also contain a purely
discrete-event system with no time-based components when modeling event-based
processes. These systems are common in models that represent logistic and
manufacturing systems.

The seExampleTankFilling model incorporates both time-based and event-based modeling
to represent vehicles queuing up to fill their tanks in a gas station.

The SimEvents part is an extension of the model presented in “A Simple Queuing System”
on page 1-3 and it models the flow of the vehicle tanks. The tanks are generated, queued,
and serviced to be filled. The Simulink part models the logic to fill the tanks. When a tank
is filled to capacity, the completion of the tank filling process is detected and a message is
sent to the SimEvents part to open the gate for releasing the tank. For more information,
see “Modeling Hybrid Systems - Tank Filling”.

 Discrete-Event Simulation in Simulink Models

1-7

See Also

Related Examples
• “Create a Discrete-Event Model” on page 2-2
• “Create a Hybrid Model with Time-Based and Event-Based Components” on page 5-

2
• “Effects of Communication Delays on an ABS Control System”

More About
• “SimEvents Product Description” on page 1-2
• “Entities in a SimEvents Model” on page 3-2
• “Role of Events in a SimEvents Model” on page 1-11
• “Bibliography” on page 1-22

External Websites
• Tech Talks: Understanding Discrete-Event Simulation

1 Introduction

1-8

https://www.mathworks.com/videos/series/understanding-discrete-event-simulation.html

Related Products
In this section...
“Information About Related Products” on page 1-9
“Limitations on Usage with Related Products” on page 1-9

Information About Related Products
See Related Products (https://www.mathworks.com/products/simevents/
related.html).

Limitations on Usage with Related Products
Code Generation

SimEvents blocks do not support code generation using the Simulink Coder™ product in
version 5.0 (R2016a). Before version 3.1.2 (R2010a), SimEvents blocks offered limited
code generation support for rapid simulation. Since version 4.0 (R2011b), SimEvents
blocks do not support code generation using the Simulink Coder product. Support for
rapid simulation was removed because the improvements in normal model simulation
performance for SimEvents models matched or surpassed the performance of rapid
simulation in releases before version 4.0.

Simulation Modes

SimEvents blocks do not support simulation using the Rapid Accelerator, Accelerator,
Processor-in-the-Loop (PIL), or External mode.

Model Reference

SimEvents blocks cannot be in a model that you reference through the Model block.

See Also
Related Examples
• “Create a Hybrid Model with Time-Based and Event-Based Components” on page 5-

2

 Related Products

1-9

https://www.mathworks.com/products/availability.html#SE
https://www.mathworks.com/products/availability.html#SE

More About
• “SimEvents Product Description” on page 1-2
• “Discrete-Event Simulation in Simulink Models” on page 1-3

1 Introduction

1-10

Role of Events in a SimEvents Model
In this section...
“Overview of Events” on page 1-11
“Viewing Events” on page 1-11
“Actions for Events” on page 1-11
“Event Actions Assistant for Events” on page 1-12

In a discrete-event simulation, an event is an observation of an instantaneous incident
that may change a state variable, an output, and/or the occurrence of other events.
Events can correspond to changes in the state of an entity.

Overview of Events
Specify event actions based on entity status. A typical event sequence in a SimEvents
model is:

1 The generation of an entity.
2 The advancement of an entity from an Entity Generator block to an Entity Server

block.
3 The completion of service on an entity in a server.
4 The exit of an entity from one Entity Server block to an Entity Terminator block.
5 The destruction of an entity.

Viewing Events
Events do not have a graphical representation. However, you can associate actions with
events. The SimEvents software maintains an event calendar to schedule events. For
more information about observing the event calendar, see “Debug SimEvents Models”.
You can also interact with the event calendar using simevents.SimulationObserver
methods. You can create a custom event observer using this class and its methods. For
more information, see “Interface for Custom Visualization”.

Actions for Events
SimEvents lets you create custom actions to happen when an event occurs for an entity.
Every event can have a corresponding action. You can write actions for many events using

 Role of Events in a SimEvents Model

1-11

MATLAB code or Simulink Functions. For more information, see “Events and Event
Actions”.

Event Actions Assistant for Events
SimEvents lets you select from a list of statistical distributions that generate template
code for simulating stochastic event actions. Also, you can automatically generate
MATLAB code that allows for simulating repeated sequences of event actions.

1 Open a new model and add the Entity server block from the SimEvents library.

2 In the block dialog box, from the Insert pattern list, select Repeating sequence
or Random number if you want to insert event action code from a template.

1 Introduction

1-12

 Role of Events in a SimEvents Model

1-13

• Repeating sequence allows you to:

• Fix the sequence by settingSequence value
• Select a Output after the final value of the sequence toRepeat, Set to

zero, or Set to infinity
• Select a variable to Assign output to

• Random number allows you to:

• Provide an initial value to the random generator engine by setting the Seed
• Select Distribution to select from a list of statistical distributions
• Select a variable to Assign output to

1 Introduction

1-14

3 Code is automatically generated in the block dialog box

See Also
Discrete Event Chart | Entity Generator | Entity Queue | Entity Server | Entity Terminator
| MATLAB Discrete Event System | Multicast Receive Queue | Resource Acquirer

More About
• “Events and Event Actions”

 See Also

1-15

SimEvents Common Design Patterns
The SimEvents library provides design patterns that you can refer to while modeling. To
access these patterns, open the SimEvents library and double-click the Design Patterns
block.

Consider these design patterns while modeling:

Design Pattern Description Input
Specifications

Output
Specifications

Application

Entities with
exponential
random arrival
times

Generates
entities with
random interval
time in
exponential
distribution
fashion.

Not applicable

Structured
entity with
specified
attributes

Model:

• Customers
entering a
store

• Incoming
phone calls
of a hotline

1 Introduction

1-16

Design Pattern Description Input
Specifications

Output
Specifications

Application

Service time
from random
distribution

Specifies waiting
time in the
Entity Server as
a random
number
uniformly
distributed from
0 through 1.

Any entity type Inherited from
the input

Model:

• Extension of
an event that
is random
within a
range (for
example,
length of a
call

• Purposeful
holding of an
entity for a
random time

Extract
attributes of
entities as
signals

Extracts one or
more attributes
of entities as
signals.

A structured
entity or bus
object with
specified
attribute

getAttribute
— Real double
scalar signal

Extracted
Attribute —
Inherited from
the input

Inspect or use a
specific entity
attribute

Timestamp
entities upon
generation

Generates
entities with an
attribute
TimeStamp
that records the
simulation time
upon generation.

Not applicable Structured
entity with
attributes Data
and TimeStamp

Use when
generation time
of entities is
needed, for
example, when
calculating the
priority in a
combined
scheduling
algorithm.

 SimEvents Common Design Patterns

1-17

Design Pattern Description Input
Specifications

Output
Specifications

Application

Release entity
upon signal
value change

Releases an
incoming entity
when there is a
jump in the step
function.

Any entity type Inherited from
the input

Use to control
the passing of
entities based on
the change of a
function.

Open gate on
service
completion

Upon service
completion, the
gate opens and
releases an
entity.

Any entity type Inherited from
the input

Use task
completion to
trigger entity
processing.

Sense an entity
passing from A
to B and open a
gate

Passing an entity
from A to B
opens the gate
and releases an
entity.

Any entity type Inherited from
the input

Use to model the
passing of an
entity in one
route to control
the passing of
another route.

Select an entity
with a matching
attribute

Select entities to
advance whose
specified
attributes are
matching the
anonymous
entity at the
control port

A structured
entity or bus
object with a
specified
attribute

Inherited from
the input

Select entities
with a specified
attribute to
output

Discrete Event
Chart: Single
Server with
Pause

A Ctrl message
triggers pause of
service for the
incoming entity.
A second Ctrl
message
continues the
service. Entity
data conveys the
service time.

Ctrl —
Anonymous
entity specifying
the pause and
resume

Entity —
Anonymous
entity specifying
service time

Inherited from
the input

Use external
events or signals
to pause the
service of
entities.

1 Introduction

1-18

Design Pattern Description Input
Specifications

Output
Specifications

Application

Discrete Event
Chart: Single
Server with
Timeout

If the service
time (which is
random) exceeds
the timeout limit
specified by the
entity data, the
entity leaves the
server.

Anonymous
entity with
specified
timeout limit

Inherited from
the input

Model:

• A protocol
that explicitly
calls for
timeouts.

• Implementati
on of special
routing or
other
handling of
entities that
exceed a time
limit.

• Entities that
represent
perishable
items.

Discrete Event
Chart: Custom
Output Switch

Randomly routes
entities to one of
the three output
ports.

Anonymous
entity

Inherited from
the input

Implement a
more
complicated
routing
algorithm for an
output switch.

 SimEvents Common Design Patterns

1-19

Design Pattern Description Input
Specifications

Output
Specifications

Application

MATLAB
Discrete Event
System: Custom
Generator

The Custom
Generator block,
defined using
the MATLAB
Discrete Event
System block, is
a basic entity
generator. The
generator block
requires
specification of
generation
period.

Not applicable Anonymous
entity

Implement a
more
complicated
entity generator.

MATLAB
Discrete Event
System: Custom
Server

Custom Server
block, defined
using the
MATLAB
Discrete Event
System block, is
a basic entity
server. The
server block
requires
specification of
server number
and service
time.

Any entity type Inherited from
the input

Implement a
more
complicated
entity server.

1 Introduction

1-20

Design Pattern Description Input
Specifications

Output
Specifications

Application

MATLAB
Discrete Event
System:
Selection Queue

The Selection
Queue block,
defined using
the MATLAB
Discrete Event
System block,
stores entities of
bus type
passenger
arriving at the
IN port. Keys
from the call
port select
passenger
entities with the
matching
trainNum field
and send them
to the OUT port.

Key —
Anonymous
entity carrying
the selection key

IN — A
structured entity
or bus object
with specified
attribute

Inherit from IN Select a specific
entity to output
from a queue.

See Also
Discrete Event Chart | MATLAB Discrete Event System

More About
• “Block Authoring”
• “Discrete-Event System Objects”
• “Implement Discrete-Event Systems with Charts”

 See Also

1-21

Bibliography
[1] Banks, Jerry, John Carlson, and Barry Nelson. Discrete-Event System Simulation,

Second Ed. Upper Saddle River, N.J.: Prentice-Hall, 1996.

[2] Cassandras, Christos G. Discrete Event Systems: Modeling and Performance Analysis.
Homewood, Illinois: Irwin and Aksen Associates, 1993.

[3] Cassandras, Christos G., and Stéphane Lafortune. Introduction to Discrete Event
Systems. Boston: Kluwer Academic Publishers, 1999.

[4] Fishman, George S. Discrete-Event Simulation: Modeling, Programming, and Analysis.
New York: Springer-Verlag, 2001.

[5] Gordon, Geoffery. System Simulation, Second Ed. Englewood Cliffs, N.J.: Prentice-Hall,
1978.

[6] Kleinrock, Leonard. Queueing Systems, Volume I: Theory. New York: Wiley, 1975.

[7] Law, Averill M., and W. David Kelton. Simulation Modeling and Analysis, 3rd Ed. New
York: McGraw-Hill, 1999.

[8] Moler, C. “Floating points: IEEE Standard unifies arithmetic model,” Cleve's Corner.
The MathWorks, Inc., 1996. https://www.mathworks.com/company/newsletters/
news_notes/pdf/Fall96Cleve.pdf.

[9] Watkins, Kevin. Discrete Event Simulation in C. London: McGraw-Hill, 1993.

[10] Zeigler, Bernard P., Herbert Praehofer, and Tag Gon Kim. Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous Complex Dynamic
Systems. Second Ed. San Diego: Academic Press, 2000.

1 Introduction

1-22

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf

Build Simple Models with SimEvents
Software

• “Create a Discrete-Event Model” on page 2-2
• “Explore Statistics and Visualize Simulation Results” on page 2-8
• “Manage Entities Using Event Actions” on page 2-20

2

Create a Discrete-Event Model
In this section...
“Add SimEvents Blocks to a Model” on page 2-2
“Configure Blocks” on page 2-3
“A Simple Queuing System” on page 2-4
“Results of the Simulation” on page 2-5

This example describes how to build a new SimEvents model representing a discrete-
event system. For more information about discrete-event systems, see “Discrete-Event
Simulation in Simulink Models” on page 1-3. The example features a simple queuing
system in which trucks arrive at a gas station to fill up their tanks. The tank of a truck is
represented by an entity that arrives at a fixed deterministic rate, waits in a queue, and
advances to a server that fills the tanks and also operates at a fixed deterministic rate.
This type of system is known as a D/D/1 queuing system in queuing notation. The notation
indicates the deterministic arrival rate, the deterministic service rate, and a single server.

The example shows how to perform basic model-building tasks in SimEvents— adding
blocks to models and configuring blocks.

To open the model directly without performing the steps, see “A Simple Queuing System”
on page 2-4.

Add SimEvents Blocks to a Model
1 Open a new model window.

On the Home tab, select New > Simulink Model and select Blank Model. Save the
model in your working folder as dd1.

2 Open the SimEvents library.

In the MATLAB Command Window, enter

simevents

The main SimEvents library window appears with the blocks it contains.
3 Add blocks to the model.

From the SimEvents library, drag these blocks to the model.

2 Build Simple Models with SimEvents Software

2-2

• Entity Generator — Generates entities to model the arrival of tanks.
• Entity Queue — Stores entities in a queue to model the queuing of tanks waiting

to be filled.
• Entity Server — Serves entities to model the tank filling process.
• Entity Terminator — Terminates entities to model the tanks' departure from the

station.

In the model window, double-click and type the name of the Scope block. Press Enter
to add it.

The added blocks represent the key processes in the simulation: generating entities,
storing entities in a queue, serving entities, and creating a plot that shows relevant
data.

Configure Blocks
Each block in a model, in this case, dd1, has a dialog box that enables you to specify block
parameters. Default parameter values might or might not fit your case, depending on your
modeling needs.

Two important parameters in the D/D/1 queuing system are the arrival rate and service
rate. The reciprocals of these rates are the duration between successive entities and the
duration of service for each entity. To examine these durations:

1 Double-click the Entity Generator block. Observe that the Period parameter is set to
1. This means that the block generates a new entity every second. A tank arrives at
the station every second.

2 Double-click the Entity Server block. Observe that the Service time parameter is set
to 1.0. This means that the server spends one-second processing each entity that
arrives at the block. Each tank is filled for one second duration.

 Create a Discrete-Event Model

2-3

The Period and Service time parameters have the same value, which means that the
server completes servicing the entity at the same time that a new entity is being
created.

3 Click Cancel in both dialog boxes to close them without changing any parameters.
4 Double-click the Entity Server block. Click the Statistics tab to view parameters

related to the statistical reporting of the block. Select Number of entities
departed, d. Click OK.

The Entity Server block acquires a signal output port labeled d. During the
simulation, the block produces an output signal at this d port. The value of the signal
is the running count of entities that have completed their service and departed from
the server.

5 Connect the Scope block to the Number of entities departed, d and display the
statistics (running count of entities).

6 Double-click the Entity Queue block. Set the Capacity parameter to Inf to create a
queue with infinite capacity and click OK.

7 Connect the blocks as shown and save the dd1 model you have created. The entity
path lengths do not affect the simulation.

SimEvents connects the source block to the destination block. If necessary, the
software also routes the connecting line around intervening blocks or lines.

8 Simulate the model.

A Simple Queuing System
Open the example to investigate a simple queuing system that generates, queues,
services, and terminates entities.

2 Build Simple Models with SimEvents Software

2-4

Results of the Simulation
When the simulation runs, the Simulink Scope block opens a window containing a plot.
The horizontal axis represents the times at which entities depart from the server, while
the vertical axis represents the total number of entities that have departed from the
server.

 Create a Discrete-Event Model

2-5

After an entity departs from the Entity Server block, the block updates its output signal at
the d port.

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator

Related Examples
• “Explore Statistics and Visualize Simulation Results” on page 2-8
• “Manage Entities Using Event Actions” on page 2-20

2 Build Simple Models with SimEvents Software

2-6

• “Model Basic Queuing Systems”
• “Create a Hybrid Model with Time-Based and Event-Based Components” on page 5-

2

More About
• “Entities in a SimEvents Model” on page 3-2

 See Also

2-7

Explore Statistics and Visualize Simulation Results
In this section...
“Explore a D/D/1 System Using Plots” on page 2-10
“Visualize and Animate Simulations” on page 2-17
“Explore the System Using the Simulink Simulation Stepper” on page 2-19
“Information About Race Conditions and Random Times” on page 2-19

The main purpose of creating a discrete-event simulation is to understand the underlying
system or inform decisions about the underlying system.

Statistical data gathered during simulation can be important for interpreting the behavior
of a model. For example:

• If you simulate the operation and maintenance of equipment on an assembly line, you
can use the computed production and defect rates to help decide whether to change
your maintenance schedule.

• If you simulate a communication bus under varying bus loads, you might use
computed average delays in high- or low-priority messages to help determine whether
a proposed architecture is viable.

The number of entities departing a block, the average wait time of entities, utilization,
and the average number of entities being served in an Entity Server block are a subset of
statistics you would want to visualize.

Many SimEvents blocks have a Statistics tab, from which you can select the relevant
data.

This procedure shows you how to access a statistical output signal for a given SimEvents
block.

1 Determine which statistical output signal you want to access and find the associated
parameter in the block dialog box. To see which statistics are available, open the
block dialog box. The list of available statistics appears as a list of parameters on the
Statistics tab of the dialog box.

2 Build Simple Models with SimEvents Software

2-8

2 Select the check box. After you apply the change, the block has a new signal output
port corresponding to that statistic.

For example, the Entity Queue block can display:

• Number of entities departed, d
• Number of entities in the block, n
• Average wait time of the entities, w
• Average queue length of entities, l

3 To display the statistics, connect those signal output ports to a Simulink Scope block.

Note Use scopes and other observer blocks to observe individual statistic ports.
However, you cannot use the same scope to observe multiple statistics ports nor use

 Explore Statistics and Visualize Simulation Results

2-9

a Scope Viewer for a statistics port. To observe multiple statistic ports, consider
using a dashboard or the Simulation Data Inspector.

See “Visualize and Animate Simulations” on page 2-17 for the table showing all the
visualization tools.

You can use the built-in statistical signals from SimEvents blocks to derive more
specialized or complex statistics. One approach is to use a Simulink Function block, and
another approach is to compute statistics using MATLAB code after the simulation is
complete. For more information about using statistics for run-time control, see “Interpret
SimEvents Models Using Statistical Analysis”. For an example to save statistics data to
workspace, see “Optimize SimEvents Models by Running Multiple Simulations”.

Explore a D/D/1 System Using Plots
This example shows how to modify a simple queuing system and plot statistical quantities
to interpret its behavior. In the example, a dd1 queuing model, which represents the tank
filling process of the vehicles arriving at a gas station, is used to view the statistics for
entity waiting time and server utilization. For more information about the dd1 queuing
model, see “Create a Discrete-Event Model” on page 2-2.

To open the model directly without performing the configuration steps, see “Visualize and
Explore Simulation Results” on page 2-11.

View Statistics for Waiting Times and Utilization

The queue length is an example of a statistic that quantifies a state at a particular instant.
Other statistics, such as average waiting time and server utilization, summarize behavior
between simtime=0 and the current time. Take these steps to modify the model so that
you can view the average waiting time of entities in the queue and server, and the
proportion of time that the server spends storing an entity.

2 Build Simple Models with SimEvents Software

2-10

1 Double-click the Entity Queue block. Set Capacity to Inf. Click the Statistics tab,
set Average wait to On, and click OK.

An output port, w, representing the average duration that entities wait in a queue
appears.Connect the statistic to a scope block and rename it to Average Wait Queue.

2 Double-click the Entity Server block. Click the Statistics tab, set both the Average
wait and Utilization parameters to On, and click OK.

Two output ports, w and util appear. w represents the average duration that entities
wait in the server. util represents the proportion of time that the server spends
storing an entity.

3 Add two Scope blocks. Rename all the Scope blocks with descriptive names, for
example, Utilization, Number of entities departed, Average Wait Server.

4 Connect the util signal output port and the two w signal output ports to the in signal
input ports of the unconnected scope blocks. Save the model.

5 Simulate the model with different values of the Period parameter for the entity
intergeneration times in the Entity Generator block. Observe the plots to see how
they change if you set the intergeneration time to 0.3, 1.1, or 1.5, for example.

Note Scope blocks do not support bus objects. SimEvents software supports Scope
blocks with only single inputs.

Visualize and Explore Simulation Results

Open the example to explore simulation results.

 Explore Statistics and Visualize Simulation Results

2-11

Observations from Plots

• For intergeneration time 0.3 or 1.1, the average wait time w in the Server block does
not change after the first departure from the block because the service time is fixed
for all departed entities. The average waiting time statistic does not include partial
wait times for entities that are in the server but have not yet departed.

2 Build Simple Models with SimEvents Software

2-12

• For intergeneration time 0.3, the utilization of the server util is nondecreasing
because the server is constantly busy once it receives the first entity.

 Explore Statistics and Visualize Simulation Results

2-13

• For intergeneration time 1.5, which is larger than the service time (1), the utilization
may decrease because the server has idle periods between entities.

2 Build Simple Models with SimEvents Software

2-14

• For intergeneration time 0.3, the average waiting time w in the queue increases
throughout the simulation because the queue gets longer and longer.

 Explore Statistics and Visualize Simulation Results

2-15

• For intergeneration time 1.1, which is larger than the service time (1), the average
waiting time w in the queue is zero because every entity that arrives at the queue is
able to depart immediately.

2 Build Simple Models with SimEvents Software

2-16

Visualize and Animate Simulations
These tools help you explore various elements of a SimEvents model.

Items to Observe Visualization Tool and Its Purpose
Statistics • Simulation Data Inspector — Show the statistic

throughout the simulation. For more information, see
“Inspect and Analyze Simulation Results” (Simulink).

• Simulink To Workspace block — Write the data set to the
MATLAB workspace when the simulation stops or pauses.

• Simulink Scope block — Create a plot using the statistic.
• Simulink Display block — Show the statistic throughout

the simulation.

 Explore Statistics and Visualize Simulation Results

2-17

Items to Observe Visualization Tool and Its Purpose
Entities passing through
model

• Simulink To File block — Write the data set into a MAT-file.
• Simulink Dashboard Scope block — Create a plot using the

statistic.
Entity animation Display > SimEvents Animation — Highlight active entities

in the simulation.
Step of a Simulation Simulink Simulation Stepper — Step forward and back

through a simulation. For more information, see “Use
Simulation Stepper” (Simulink).

Custom animation Use SimEvents custom visualization API — Create custom
observers of the entities and events in a model. For more
information, see “Interface for Custom Visualization”.

Note The Simulink Floating Scope does not support SimEvents models.

Simulation Data Inspector is a unified user interface for viewing both entities and signal
(for example, statistics) data. For more information, see “Inspect and Analyze Simulation
Results” (Simulink).

During simulation, animation provides visual verification that your model behaves as you
expect. Animation highlights active entities in a model as execution progresses. You can
control the speed of entity activity animation during simulation, or turn off animation. In
the Simulink editor, select Display > SimEvents Animation Menu, then select:

• Fast
• Medium
• Slow
• None

The Fast animation speed shows the active highlights at each time step. To add delay
with each time step, set the animation speed to Medium or Slow. To turn off animation,
in the Simulink editor, select Display > Message Animation > None.

Animation is disabled by default in SimEvents models.

2 Build Simple Models with SimEvents Software

2-18

Explore the System Using the Simulink Simulation Stepper
Simulation Stepper enables you to step through major time steps of a simulation. Use this
tool to explore your discrete-event system. For more information, see “Simulation
Stepper” (Simulink).

Information About Race Conditions and Random Times
You can vary the processing sequence for simultaneous events or make the
intergeneration times or service times random.

See Also
Entity Server | Entity Terminator | Entity Generator | Entity Queue

Related Examples
• “Manage Entities Using Event Actions” on page 2-20
• “Create a Hybrid Model with Time-Based and Event-Based Components” on page 5-

2
• “Interpret SimEvents Models Using Statistical Analysis”

 See Also

2-19

Manage Entities Using Event Actions
This example shows how to control entity generation rate and write event actions to
change entity attributes in a simple queuing system. In a discrete-event simulation, an
event is an observation of an instantaneous incident that may change a state variable, an
output, or the occurrence of other events. SimEvents allows you to create custom actions
when an event occurs. These actions are called event actions. Events can have
corresponding actions. You can write event actions to change entity attributes by using
MATLAB code or Simulink functions.

This is a simple queuing system with Entity Generator, Entity Queue, Entity Server, and
Entity Terminator blocks. For more information about performing basic model-building
tasks to create this model, see “Create a Discrete-Event Model” on page 2-2.

In this example, an entity represents the tank of a truck that arrives at a gas station. The
attribute of an entity represents the current gas level in a tank. Event actions represent
the changes of the gas level in a tank. Tanks are randomly generated, queued, and they
are serviced with a pump which transfers a constant amount of gas for one second
duration. Tanks depart from the station with their new total gas amount.

To open the example model without performing the configuration steps, see “Manage
Entities in a Queueing System” on page 2-24.

Build the Model
1 Select the whole model or the entity paths originating from the Entity Generator,

Entity Queue, and Entity Server blocks and right-click to select Log Selected
Signals. Simulation Data Inspector is used to visualize the flow of tanks and their gas
level in the model. For more information, see “Inspect Simulation Data” (Simulink).

2 Rename the Entity Generator block as Tank Generator, the Entity Queue block as
Waiting Queue, the Entity Server block as Pump, and the Entity Terminator block as
Exit.

2 Build Simple Models with SimEvents Software

2-20

3 Rename the path originating from the Tank Generator block as Tank to Queue, the
Waiting Queue block as Tank to Pump, and the Pump block as Tank to Exit.

Configure and Simulate Model
1 Double-click the Tank Generator, and select the Entity type tab. Change the Entity

type name to Tank, and the Attribute Name to CurrentGasLevel.

The entity attribute CurrentGasLevel represents the existing amount of gas in
each tank.

2 Simulate the model. Open the Simulation Data Inspector. Observe that the tanks
approach the Waiting Queue, the Pump, and the Exit with the same rate.

Tanks leave the station with their initial gas amount 1 which is the Attribute Initial
Value.

 Manage Entities Using Event Actions

2-21

3 Open the Tank Generator block parameters dialog box. In the Entity generation tab,
set Time source to Matlab action. Observe the default MATLAB code.

dt = rand(1,1);

The code randomizes the entity intergeneration time parameter dt to represent
random tank arrivals.

4 Simulate the updated model. In the Simulation Data Inspector, observe that tanks
arrive randomly with the same initial gas amount 1.

Observe that the tanks are generated randomly but they approach the pump with a
regulated fixed rate because service time for the Pump is 1.

2 Build Simple Models with SimEvents Software

2-22

5 Open the Tank Generator block dialog box. In the Event actions tab, in the
Generate action field, enter the code.

entity.CurrentGasLevel = randi([1,4]);

Tanks arrive at the station with a random gas amount that ranges from 1 to 4.
6 Simulate the updated model. In the Simulation Data Inspector, observe that the

tanks arrive with random amounts of gas.

7 For the Pump block, set these parameters:

a In the Event actions tab, select Service complete.
b For the Service complete action field, enter the code.

entity.CurrentGasLevel = entity.CurrentGasLevel + 3;

 Manage Entities Using Event Actions

2-23

Each tank is filled with 3 units of gas for 1s duration, and then it departs the
pump.

Observe that the Tank Generator and the Pump blocks update with the event action
icon {...} indicating that the blocks define an event action.

8 Simulate the updated model. In the Simulation Data Inspector, observe that each
tank leaves the station with 3 additional units of gas.

Manage Entities in a Queueing System
Open the example to investigate the model that manages entities with event actions.

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator

2 Build Simple Models with SimEvents Software

2-24

Related Examples
• “Create a Hybrid Model with Time-Based and Event-Based Components” on page 5-

2
• “Create a Discrete-Event Model” on page 2-2
• “Explore Statistics and Visualize Simulation Results” on page 2-8

 See Also

2-25

Key Concepts in SimEvents
Software

• “Entities in a SimEvents Model” on page 3-2
• “Role of Entity Ports and Paths” on page 3-9
• “Storage with Queues and Servers” on page 3-13
• “Write Event Actions” on page 3-21

3

Entities in a SimEvents Model

In this section...
“Meaning of Entities in Different Applications” on page 3-2
“Vary the Interpretation of Entities” on page 3-3
“Visualize Entities” on page 3-3
“Data and Role of Entity Attributes” on page 3-3
“Create Entities in a SimEvents Model” on page 3-3

Entities are discrete items of interest in a discrete-event simulation. By definition, these
items are called entities in SimEvents software. Entities can pass through a network of
queues, servers, gates, and switches during a simulation. Entities can carry data, known
in SimEvents software as attributes.

SimEvents models typically contain at least one source block that generates entities.
Other SimEvents blocks in the model process the entities that the source block generates.

Note Entities are not the same as events. Events are instantaneous discrete incidents
that change a state variable, an output, and/or the occurrence of other events. See “Role
of Events in a SimEvents Model” on page 1-11 for details.

Meaning of Entities in Different Applications
You determine what an entity signifies, based on what you are modeling. The table lists
example entity representations in various applications.

Context of Sample Application Entities
Airport with a queue for runway access Airplanes waiting for access to runway
Communication network Packets, frames, or messages to transmit
Bank of elevators People traveling in elevators
Conveyor belt for assembling parts Parts to assemble
Computer operating system Computational tasks or jobs

3 Key Concepts in SimEvents Software

3-2

Vary the Interpretation of Entities
A single model can use entities to represent different kinds of items. For example, if you
are modeling a factory that processes two different kinds of parts, you can:

• Use two Entity Generator blocks to create the two kinds of parts.
• Use one Entity Generator block and subsequently assign an attribute to indicate what

kind of part each entity represents and another attribute to represent a property.

Note SimEvents entities are fundamentally the same as Stateflow messages.

Visualize Entities
Entities do not appear explicitly in the model window. A graphical block can represent a
component that processes entities, but entities themselves do not have a graphical
representation. However, you can gather information about entities using Simulink
scopes. You cannot branch an entity connection line. If your application requires an entity
to arrive at multiple blocks, use Entity Replicator block to create copies of entities.

Data and Role of Entity Attributes
You can optionally attach data to entities. Such data is stored in one or more attributes of
an entity. You define names and numeric values for attributes. For example, if your
entities represent a message that you are transmitting across a communication network,
you might assign data called length that indicates the length of each particular message.
You can read or change the values of attributes during the simulation.

You can optionally specify the structure of an entity using a Simulink bus object. This
capability is useful when defining complex entity structures that need to be defined once,
but used in multiple locations in a model. In addition, the MATLAB Discrete-Event System
and Discrete Event Chart blocks require that you specify entities as bus objects. For more
information on bus objects, see “When to Use Bus Objects” (Simulink).

Create Entities in a SimEvents Model
An Entity Generator block can be used to generate entities. By default, the block creates
time-based entities. You can change the Time Source parameter to select the time
source for the entity generation. You can create time-based entities using:

 Entities in a SimEvents Model

3-3

• The Period parameter value. For more information, see “Create Time-Based Entities”
on page 3-4.

• A signal port. You can then connect a Simulink source block, such as a Repeating
Sequence block, to the signal port. The time value cannot be a negative number. For
more information, see “Specify Intergeneration Times for Entities”.

• MATLAB code. For more information, see “Create Randomized Entities” on page 3-
5.

Create Time-Based Entities

Use the Entity Generation block to create time-based entities. The Entity Generation lets
you specify a period at which it creates entities.

1 Open the SimEvents block library. You can use the Simulink browser or type
simevents at the MATLAB Command Window.

2 Create a new model.
3 From the SimEvents library, drag the Entity Generator block to the new model.
4 From the SimEvents library, drag the Entity Queue block to the new model.

• Connect the Entity Generator block to the input of the Entity Queue.
• In the Entity Queue block, select Number of entities departed, d.

5 From the Simulink Sinks library, drag a Scope block to the new model. Connect the
Scope block to the d port of the Entity Queue block.

6 From the SimEvents library, drag an Entity Terminator block to the new model.
Connect the output of the Entity Queue block to the input of the Entity Terminator
block.

Upon simulation, the scope displays the entities that depart the queue.

3 Key Concepts in SimEvents Software

3-4

Note You cannot connect a scope to a SimEvents line, as denoted by the thick double
arrow line.

Create Randomized Entities

Use the Entity Generation block to create time-based entities. The Entity Generation lets
you specify a randomization operation (such as the MATLAB rand function) to create
entities at random times.

1 Open the SimEvents block library. You can use the Simulink browser or type
simevents at the MATLAB Command Window.

2 Create a model.
3 From the SimEvents library, drag the Entity Generator block to the new model.

 Entities in a SimEvents Model

3-5

a Double-click the block and set the Time source parameter to MATLAB action.
b In the Intergeneration time action parameter, enter a call to a randomizer

function, such as rand. For example:

dt = rand(1,1);

4 From the SimEvents library, drag the Entity Queue block to the new model.

• Connect the Entity Generator block to the input of the Entity Queue
• In the Entity Queue block, select Number of entities departed, d.

5 From the Simulink Sinks library, drag a Scope block to the new model. Connect the
Scope block to the d port of the Entity Queue block.

6 From the SimEvents library, drag an Entity Terminator block to the new model.
Connect the output of the Entity Queue block to the input of the Entity Terminator
block.

Upon simulation, the scope displays the entities that depart the queue.

3 Key Concepts in SimEvents Software

3-6

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event Chart | Entity Gate |
Entity Generator | Entity Input Switch | Entity Multicast | Entity Output Switch | Entity
Queue | Entity Replicator | Entity Server | Entity Terminator | MATLAB Discrete Event
System | Multicast Receive Queue | Resource Acquirer | Resource Pool | Resource
Releaser

Related Examples
• “Generate Entities When Events Occur”
• “Specify Intergeneration Times for Entities”
• “Manipulate Entity Attributes”
• “Inspect Structures of Entities”

 See Also

3-7

More About
• “Entity Types”
• “Attribute Value Support”

3 Key Concepts in SimEvents Software

3-8

Role of Entity Ports and Paths
In this section...
“Entity Ports and Paths” on page 3-9
“Definition of Entity Paths” on page 3-9
“Implications of Entity Paths” on page 3-10
“Designing Paths Using Input, Output, and Entity Combiner Blocks” on page 3-11

Entity Ports and Paths
An entity output port provides a way for an entity to depart from a block. Conversely, an
entity input port provides a way for an entity to arrive at a block.

A connection line indicates a path along which an entity can potentially advance.
However, the connection line does not imply that any entities actually advance along that
path during a simulation. For a given entity path and a given time instant during the
simulation, any of the following could be true:

• No entity is trying to advance along that path.
• An entity has tried and failed to advance along that path. For some blocks, it is normal

for an entity input port to be unavailable under certain conditions. As a result, the
entity fails in its attempt to advance along that path, even though the path is intact
(that is, even though the ports are connected). An entity that tries and fails to advance
is called a pending entity.

• One or more entities successfully advance along that path. This occurs only at a
discrete set of times during a simulation.

Note The simulation could also have one or more times at which one or more entities
successfully advance along a given entity path. Simultaneously, one or more different
entities try and fail to advance along that same entity path. For example, an entity departs
from a queue and, simultaneously, the next entity in the queue tries and fails to depart.

Definition of Entity Paths
An entity path is a connection from an entity output port to an entity input port, depicted
as a line connecting the entity ports of two SimEvents blocks. An entity path represents

 Role of Entity Ports and Paths

3-9

the equivalence between an entity's departure from the first block and arrival at the
second block. For example, in the model shown below, any entity that departs from the
Entity Queue block's output port equivalently arrives at the Entity Server block's input
port.

The existence of the entity path does not guarantee that any entity actually uses the path.
For example, the simulation could be so short that no entities are ever generated. Even
when an entity path is used, it is used only at a discrete set of times during the
simulation.

Implications of Entity Paths
In some models, you can use the entity connection lines to infer the full sequence of
blocks at which a given entity arrives, throughout the simulation.

In many discrete-event models, however, the set of entity connection lines does not
completely determine the sequence of blocks at which each entity arrives. This example
shows two queues in a parallel arrangement, preceded by a block that has one entity
input port and two entity output ports.

By looking at the entity connection lines alone, you cannot tell which queue block's IN
port an entity arrives at. Instead, you need to know more about how the one-to-two block
(Output Switch) behaves and understand the outcome of certain run-time decisions.

3 Key Concepts in SimEvents Software

3-10

Designing Paths Using Input, Output, and Entity Combiner
Blocks
You design entity paths by choosing or combining entity paths using the Entity Input
Switch, Entity Output Switch, and Entity Combiner blocks of the SimEvents library. These
blocks have extra entity ports that let you vary the model's topology (that is, the set of
blocks and connection lines).

Typical reasons for manipulating entity paths are:

• To describe an inherently parallel behavior in the situation you are modeling — for
example, a computer cluster with two computers that share the computing load. You
can use the Entity Output Switch block to send computing jobs to one of the two
computers. You might also use the Entity Input Switch block if computing jobs share a
common destination following the pair of computers.

• To design nonlinear topologies, such as feedback loops — repeating an operation if
quality criteria such as quality of service (QoS) are not met. You can use the Entity
Input Switch block with the Active port selection parameter set to All to combine
the paths of new entities and entities that require a repeated operation.

• To incorporate logical decision-making into your simulation — for example, to
determine scheduling protocols. You might use the Entity Input Switch block to
determine which of several queues receive attention from a server.

• To incorporate logic for activation or deactivation of an entity path, use the Entity Gate
block. For example, you can activate an entity path for one entity when a condition is
fulfilled in your model.

• To model routing of copies of an entity to multiple remote locations in the model,
consider using the Entity Multicast and Multicast Receive Queue blocks.

Other libraries in the SimEvents library set contain a number of blocks whose secondary
features, such as preemption from a server or timeout from a queue or server, give you
opportunities to design paths.

See Also
Entity Input Switch | Entity Output Switch

 See Also

3-11

Related Examples
• “Select Departure Path Using Entity Output Switch”
• “Select Arrival Path Using Entity Input Switch”
• “Combine Entity Paths”
• “Control Output Switch with Event Actions and Simulink Function”

More About
• “Role of Paths in SimEvents Models”
• “Use Attributes to Route Entities”
• “Role of Gates in SimEvents Models”

3 Key Concepts in SimEvents Software

3-12

Storage with Queues and Servers
In this section...
“Queues and Servers” on page 3-13
“Behavior and Features of Queues” on page 3-13
“Physical Queues and Logical Queues” on page 3-14
“Queue Policies” on page 3-14
“Storage Actions” on page 3-14
“Behavior and Features of Servers” on page 3-16
“What Servers Represent” on page 3-16
“Common Server Use Cases” on page 3-17
“Constructs Involving Queues and Servers” on page 3-17
“Broadcast Entities Using Multicast Mode” on page 3-18

Queues and Servers
Queue and server blocks are storage blocks that hold entities.

• Queues order entities and sort them according to queue policies.
• Servers delay entities until certain conditions are met.

Behavior and Features of Queues
In a discrete-event simulation, a queue stores entities for a length of time that cannot be
determined in advance. The queue attempts to output entities when it can, but its success
depends on whether the next block accepts new entities. An everyday example of a queue
is when you stand in a line with other people to wait for some type of service to address
your needs and you cannot determine in advance how long you must wait.

Distinguishing features of different queues include:

• Capacity — The number of entities the queue can store simultaneously
• Discipline — A feature determines which entity departs first if the queue stores

multiple entities

 Storage with Queues and Servers

3-13

Physical Queues and Logical Queues
Sometimes, a queue in a model is similar to an analogous aspect of the real-world system
being modeled. This kind of queue is sometimes called a physical queue. For example, you
might use a queue to represent a sequence of:

• People standing in line
• Airplanes waiting to access a runway
• Messages waiting to be sent
• Parts waiting to be assembled in a factory
• Computer programs waiting to be executed

In other cases, a queue in a model does not arise in an obvious way from the real-world
system but instead is included for modeling purposes. This kind of queue is sometimes
called a logical queue. For example, you might use a queue to provide a temporary
storage area for entities that might otherwise have nowhere to go. Such use of a logical
queue can prevent deadlocks or simplify the simulation.

Use the Entity Queue block to model queues.

Queue Policies
The Entity Queue block uses these queue policies:

• FIFO — The block processes the entity as first in first out.
• LIFO — The block processes the entity as last in first out.
• Priority — The block reads the priority from the Priority Source parameter. This

parameter is a particular attribute value that the block stores based on the value of
the number.

Storage Actions
Storage blocks have event actions based on events influencing entities in the
corresponding storage blocks. Each block has a set of actions particular to the block.

3 Key Concepts in SimEvents Software

3-14

Entity
Generator

Entity Queue Entity Server Entity
Terminator

Resource
Acquirer

Entity
generation

Entity entry to
queue block

Entity entry to
server block

Entity entry to
terminator block

Entity entry to
acquirer block

Entity exit from
block

Entity exit from
block

Service
completion of
entity

N/A Entity exit from
acquirer block

N/A Entity is blocked Entity exit from
block

N/A N/A

N/A N/A Entity is blocked N/A N/A
N/A N/A Entity is

preempted
N/A N/A

This illustration shows the flow of actions as entities move through a discrete-event
system simulation.

Notes:

• Entity entry, exit, and blocking actions are performed as part of an entity forward
event.

• Service completion action is performed following a timer event.
• Entity termination event performs a destruction action.

For more information on event actions, see “Events and Event Actions”.

 Storage with Queues and Servers

3-15

Behavior and Features of Servers
In a discrete-event simulation, a server stores entities for a length of time, called the
service time, and then attempts to output the entity. During the service period, the block
is said to be serving the entity that it stores. An everyday example of a server is a person
(a bank teller, a retail cashier, etc.) with whom you perform a transaction with a projected
duration.

The service time for each entity is computed when it arrives. If, however, the next block
does not accept the arrival of an entity that has completed its service, the server is forced
to hold the entity longer.

Distinguishing features of different servers include:

• The number of entities it can serve simultaneously, which could be finite or infinite
• Characteristics of, or the method of computing, the service times of arriving entities
• Whether the server permits certain arriving entities to preempt entities that are

already stored in the server

Tip In the absence of preemption, a finite-capacity server does not accept new arrivals
when it is already full. You can place a queue before each finite-capacity server,
establishing a place for entities to stay while they are waiting for the server to accept
them. Otherwise, the waiting entities might be stored in various different locations in the
model and the situation might be more difficult for you to predict or analyze.

What Servers Represent
In some cases, a server in a model is similar to an analogous aspect of the real-world
system being modeled. For example, you might use a server to represent:

• A person (such as a bank teller) who performs a transaction with each arriving
customer

• A transmitter that processes and sends messages
• A machine that assembles parts in a factory
• A computer that executes programs

3 Key Concepts in SimEvents Software

3-16

Servers Inserted for Modeling Purposes

In some cases, a server in a model does not represent a real-world system. A common
modeling technique involves a delay of duration zero, that is, an infinite server whose
service time is zero, to provide a place for an entity to reside to manipulate its attributes.

Use the Entity Server block to model queues.

Common Server Use Cases
Common server use cases of a server include:

• In a production line application, the processing unit
• In a network application, the processor

Constructs Involving Queues and Servers
You can combine Entity Queue and Entity Server blocks to model different situations:

• “Serial Queue-Server Pairs” on page 3-17
• “Parallel Queue-Server Pairs as Alternatives” on page 3-18
• “Parallel Queue-Server Pairs in Multicasting” on page 3-18
• “Serial Connection of Queues” on page 3-18
• “Parallel Connection of Queues” on page 3-18

Serial Queue-Server Pairs

Two queue-server pairs connected in series represent successive operations that an entity
undergoes. For example, parts on an assembly line are processed sequentially by two
machines.

You can alternatively model the situation as a pair of servers without a queue between
them. However, the absence of the queue means that if the first server completes service
on an entity before the second server is available:

• The entity must stay in the first server past the end of service.
• The first server cannot accept a new entity for service until the second server becomes

available.

 Storage with Queues and Servers

3-17

Parallel Queue-Server Pairs as Alternatives

Two queue-server pairs connected in parallel, in which each entity arrives at one or the
other, represent alternative operations. For example, vehicles wait in line for one of
several tollbooths at a toll plaza. In this case, the model must have decision logic, possibly
in the form of a switch preceding this pattern.

Parallel Queue-Server Pairs in Multicasting

Two queue-server pairs connected in parallel, in which a copy of each entity arrives at
both, represent a multicasting situation such as sending a message to multiple recipients.
Note that copying entities might not make sense in some applications.

Serial Connection of Queues

Two queues connected in series might be useful if you are using entities to model items
that physically experience two distinct sets of conditions while in storage. For example,
additional inventory items that overflow one storage area have to stay in another storage
area in which a less well-regulated temperature affects the items’ long-term quality.
Modeling the two storage areas as distinct queue blocks facilitates viewing the average
length of time that entities stay in the overflow storage area.

Parallel Connection of Queues

Two queues connected in parallel, in which each entity arrives at one or the other,
represent alternative paths for waiting. The paths might lead to different operations, such
as a line of vehicles waiting for a tollbooth and a line of vehicles waiting on a jammed exit
ramp of the freeway. You might model the tollbooth as a server and the traffic jam as a
gate.

Broadcast Entities Using Multicast Mode
Multicast mode enables multiple queues to receive entities from one Entity Multicast
block. The receiving block for an Entity Multicast blocks is a Multicast Receive Queue
block whose Tag parameters have the same value. The Multicast Receive Queue block is
essentially the Entity Queue block with the Entity Arrival source parameter set to
Multicast.

Using the Entity Multicast block requires no connecting lines. The Tag parameters just
need to match.

3 Key Concepts in SimEvents Software

3-18

1 From the SimEvents library, drag the Entity Multicast and Multicast Receive Queue
blocks.

2 In both dialog boxes, in the Multicast tag parameters, enter the same text. For
example, A.

The software uses these tags to match the broadcaster and broadcastees.

This is example shows entities broadcast to two queues. Notice that the FIFO blocks for
both queues have the A tag.

 Storage with Queues and Servers

3-19

See Also
Entity Multicast | Entity Queue | Entity Server | Multicast Receive Queue | Resource
Acquirer | Resource Pool | Resource Releaser

Related Examples
• “Model Basic Queuing Systems”
• “Model with Resources”

More About
• “Events and Event Actions”

3 Key Concepts in SimEvents Software

3-20

Write Event Actions
You can write actions for events using MATLAB code or Simulink functions. Each block
that enables you to create actions has an Event Actions tab. The type of event action you
can write depends on the block. For example, for the Entity Queue block you can create
event actions for:

• Entity entry to the block
• Exit from the block
• Blocked entities

In the actions, entities are available as MATLAB structures, with structure fields
representing values of the entity attributes. Reserved fields such as ID and priority are
also available as a separate MATLAB structure called entitySys.

 Write Event Actions

3-21

When you create an action for the block, a badge appears to indicate that an action exists.
One or more badges appear, depending on the action.

Hover over the badge to see what actions exist.

Double-clicking the badge opens the Event actions tab of the block.

As you define an action, an asterisk (*) appears in the Event actions tab.

For more information on defining event actions, see “Events and Event Actions”.

See Also
Entity Generator | Entity Queue | Entity Replicator | Entity Server | Entity Terminator |
Multicast Receive Queue

Related Examples
• “Generate Entities When Events Occur”
• “Run Computations on Events”

More About
• “Events and Event Actions”

3 Key Concepts in SimEvents Software

3-22

Inspect Statistics

4

Count Entities
In this section...
“Count Departures Across the Simulation” on page 4-2
“Count Departures per Time Instant” on page 4-2
“Reset a Counter upon an Event” on page 4-2
“Associate Each Entity with Its Index” on page 4-3

Using statistics, you can count entities across the simulation and per time instant.

Count Departures Across the Simulation
Use the d or a output from a block to learn how many entities have departed (or arrived
at) the block. The output signal also indicates when departures occurred. This method of
counting is cumulative throughout the simulation.

Count Departures per Time Instant
Suppose that you want to visualize entity departures from a particular block, and you
want to reset (that is, restart) the counter at each time instant. Visualizing departures per
time instant can help you:

• Detect simultaneous departures
• Compare the number of simultaneous departures at different time instants
• Visualize the departure times while keeping the plot axis manageable

For an example of counting simultaneous departures from a server in a cumulative way,
see “Count Simultaneous Departures from a Server”.

For an example of noncumulative counting of entity arrivals, see “Noncumulative
Counting of Entities”.

Reset a Counter upon an Event
Suppose that you want to count entities that depart from a particular block, and you want
to reset the counter at arbitrary times during the simulation. Resetting the counter can
help you compute statistics for evaluating your system over portions of the simulation.

4 Inspect Statistics

4-2

During the simulation, the block counts departing entities and resets its counter
whenever the input signal satisfies your specified event criteria.

Associate Each Entity with Its Index
To associate an entity with its index, in the initialization section of the Entity Generator
block, you can associate an entity with its generation time:

1 Use a Simulink Function block with a clock block, such as Digital Clock, to create a
Simulink function.

This function returns the current time.
2 In the Entity Generator block, create an attribute and associate it with the current

time that the Simulink function returns.

For an example, see Time stamp entities upon generation in the SimEvents Design
Patterns sublibrary.

See Also
Entity Queue

Related Examples
• “Explore Statistics and Visualize Simulation Results” on page 2-8
• “Count Simultaneous Departures from a Server”

 See Also

4-3

Simulate Multidomain Models

5

Create a Hybrid Model with Time-Based and Event-
Based Components

In this section...
“Communication between SimEvents and Simulink components” on page 5-3
“SimEvents Part of Model” on page 5-4
“Simulink Part of Model” on page 5-5
“Simulate the Hybrid Model” on page 5-5
“Event-Based and Time-Based Dynamics in the Simulation” on page 5-7

The example seExampleTankFilling models tanks queuing up to be filled. In the
example, SimEvents component models event-based behavior while the Simulink
component models time-based dynamics.

5 Simulate Multidomain Models

5-2

Communication between SimEvents and Simulink components
Without the Selection Gate block and Simulink Function blocks, the flow of tanks in
Discrete-Event Process follows their generation, queuing, service, and termination. For
more information about building the SimEvents component of the model, see “Create a
Discrete-Event Model” on page 2-2. To learn more about writing event actions for the
same model, see “Manage Entities Using Event Actions” on page 2-20.

The Pump -Tank model is the Simulink component that represents the time-driven tank
filling process. When a tank is full, it generates a SimEvents message through the Hit
Crossing block and the message follows a similar flow of generation, queuing, service,
and termination. The badge denotes the transition between time-based and event-
based behavior.

The arrival of a tank at the Entity Server block triggers the filling process in Pump-Tank
model. When a tank is full, Hit Crossing block labeled Tank Full generates a message .
Arrival of this message at the Processor in Interface component triggers the Simulink
Function block to release the Selection Gate for the full tank's departure.

 Create a Hybrid Model with Time-Based and Event-Based Components

5-3

Next, SimEvents and Simulink components of the model are presented in detail.

SimEvents Part of Model
The SimEvents part models the flow of tanks.

• The Entity Generator block generates the tanks.
• The Entity Queue block queues each tank in first-in-first-out (FIFO) mode.
• The Entity Server block calls the startFilling Simulink function to fill each tank.

Several tanks can be served at the same time.
• The Entity Server block in the Interface processes the SimEvents message generated

by the Hit Crossing block and calls the Simulink function to enable the Selection Gate
subsystem for a specific tank. The block also calls the Simulink function to reinitialize
the Integrator block for the next fill.

5 Simulate Multidomain Models

5-4

Simulink Part of Model
The Simulink part models the time-driven process of filling tanks.

• This component contains the logic to fill the tanks.
• Each tank has a Capacity attribute. The continuous time part models the process of
filling up a tank, modeled by the Integrator block. When a tank is filled to its capacity,
the Selection Gate subsystem releases the tank and the tank departs.

• This component also contains the Simulink function startFilling.
• The Hit Crossing block detects the completion of the tank filling process and sends a

SimEvents message regarding this event. This message is processed in the Interface,
which triggers the release of the tank by the Selection Gate and the reinitialization of
the Integrator block for the next fill.

Simulate the Hybrid Model
Run the seExampleTankFilling model. In the first scope, observe the fill process for
each pump.

 Create a Hybrid Model with Time-Based and Event-Based Components

5-5

In the second scope, observe the number of trucks leaving after being filled. The plot
displays that there are 15 trucks leaving the facility after their gas tanks were filled.

5 Simulate Multidomain Models

5-6

Event-Based and Time-Based Dynamics in the Simulation
In the seExampleTankFilling model, the time-based dynamics of the tank fill coexist
with the event-based dynamics of the tank flow system. When you run the simulation, the
solver and the event calendar both play a role. Upon major time steps of the solver, the
simulation solves the ordinary differential equations that represent the dynamics of the
tank fill system. Solving the event-based dynamics entails scheduling and processing
events, such as service completion and entity generation, on the SimEvents event
calendar. Because the model uses a variable-step solver, when events occur in the
discrete-event system, the solver has a major time step.

 Create a Hybrid Model with Time-Based and Event-Based Components

5-7

To learn more about solvers, see “Solvers for Discrete-Event Systems”. To learn more
about creating event-based and time-based models, see “Working with SimEvents and
Simulink”.

See Also
Entity Generator | Entity Queue | Entity Server

More About
• “Generate Entities When Events Occur”
• “Model Basic Queuing Systems”
• “Model with Resources”
• “Solvers for Discrete-Event Systems”

5 Simulate Multidomain Models

5-8

